Studies on Electro-Optical Properties of Polymer Matrix/LC/SiO₂ Nanoparticles Composites

Wenbo Li, Mengjun Zhu, Xiaokang Ding, Bofu Li, Wei Huang, Hui Cao, Zhou Yang, Huai Yang

Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China

Received 10 May 2007; accepted 24 June 2008 DOI 10.1002/app.28874 Published online 30 October 2008 in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: Polymer-dispersed liquid crystal (PDLC) films were prepared by ultraviolet light-induced polymerization of photopolymerizable monomers in nematic liquid crystal (LC)/monomers/SiO₂ nanoparticles composites, and the effect of SiO₂ nanoparticles on the electro-optical properties of PDLC films was studied. The observed effect showed that by the adjustment of the SiO₂ nanoparticles content, the refractive index

ratio of the LC and polymer could be modulated, and the electro-optical properties of the polymer matrix/LC/SiO₂ nanoparticles composites could be optimized. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 111: 1449–1453, 2009

Key words: liquid crystal; SiO₂ nanoparticles; light scattering; optics; photopolymerization

INTRODUCTION

Polymer-dispersed liquid crystal (PDLC) films consist of a liquid crystal (LC) material dispersed within a semicontinuous polymer matrix¹ exciting great application interests.²⁻⁴ The films show transparent and light scattering states in the electric field-on and field-off states, respectively, which is decided by whether the refractive indices match between the polymer matrix and the LC material.^{5–7} The switching properties of the LC molecules within the domains depend on many variables including the size and shape of the LC domain, molecular interactions between the LC material and the polymer matrix. The application of a sufficient strength electric field can overcome the anchoring energy on the LC molecules at the interface. When the electric field is removed, the turn-off time (T_{off}) for the molecules to revert to the equilibrium distribution is usually long.8

In our previous research,⁹ the addition of a small amount of chiral dopant in PDLC films decreased $T_{\rm off}$ significantly, but decreased the light scattering intensity in field-off state and contrast ratio (CR) simultaneously. In this study, PDLC films were prepared by ultraviolet light-induced polymerization of photopolymerizable monomers in nematic LC/photopolymerizable monomers/SiO₂ nanoparticles composites, and the effect of SiO₂ nanoparticles on the electro-optical properties of PDLC films was studied. This interest was also caused by recent achievements of modern nanotechnologies suggesting that a huge number of nanoscale objects could be potentially used as filling materials for PDLC films. Yaroshchuk and coworkers^{10,11} investigated the electro-optical properties of filled nematic LC with added inorganic nanoparticles. They made the exhaustive explanation about the variety of the off-state transmittance (T_o) and the saturation transmittance (T_s) , and did present some of the experimental results on the switching times and the voltages measured as a function of Sb₂O₅ nanoparticles content. However, little work was investigated about the mechanism of the changes in the switching times and the voltages. Their studies may be more reasonable if they had considered this situation.

Therefore, in this article, we aimed to investigate the electro-optical properties of the PDLC materials with added organic SiO₂ nanoparticles, and present a reasonable explanation on the changes in the switching times and the voltages in detail. In addition, it was expected that T_{off} would be decreased whereas turn-on time (T_{on}) and CR would be

Correspondence to: H. Yang (yanghuai@mater.ustb.edu. cn).

Contract grant sponsor: Program of Beijing Municipal Science and Technology; contract grant number: Y0405004040121.

Contract grant sponsor: Major Project of Ministry Education of the People's Republic of China; contract grant number: 104187.

Contract grant sponsor: Doctoral Fund of Ministry of Education of the People's Republic of China; contract grant number: 20050425850.

Journal of Applied Polymer Science, Vol. 111, 1449–1453 (2009) © 2008 Wiley Periodicals, Inc.

1. Monomer TMHA f = 0BDDA f = 0f =

Scheme 1 Chemical structures and some physical properties of the materials.

increased simultaneously by the adjustment of the SiO_2 nanoparticles content.

EXPERIMENTAL

Materials

The nematic LC was SLC 7011-100 (Shijiazhuang Yongsheng Huatsing Liquid Crystal, Shijiazhuang City, Hebei Province, China), and the monomers were 3,5,5-trimethylhexylacrylate (TMHA) (Aldrich Chemical, St. Louis, MO) and 1,4-butanedioldiacry-late (BDDA) (Aldrich Chemical). SiO₂ nanoparticles were hydrophobic silica nanoparticles aerosil R812S (primary size 7 nm, Degussa-Huis, Essen, Germany). The photoinitiator was irgacure 651 (Shijiazhuang Yongsheng Huatsing Liquid Crystal). The chemical structures and some physical properties of these raw materials are shown in Scheme 1.

Preparation of the PDLC cell

The polymerization-induced phase-separation (PIPS) method ^{12–14} was used for the sample preparation. At first, SLC 7011-100/TMHA/BDDA/SiO₂ nanoparticles composites were prepared (LC/monomers = 4/1 wt %, TMHA/BDDA = 4/1 wt %), 2.0 wt % of irgacure 651 was added as a UV-curing photoinitiator. Then, the composites were vigorously stirred until a homogeneous mixture had formed. After that the composites were filled into the indium tin oxide (ITO)-coated glass substrates by capillary action. The cell thickness was adjusted to 40 µm by using glass fiber spacers. The composites were irradiated by UV

light (35-W Hg lamp, PS135, UV Flood, Stockholm, Sweden) for 5 min at 273.15 K, thus PDLC cell was prepared. The samples A–E are doped with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % of SiO₂ nanoparticles, respectively.

Electro-optical measurements

The electro-optical properties of the PDLC films were measured by LCD parameters tester (LCT-5016C, Changchun Liancheng Instrument, Changchun City, Jilin Province, China). A halogen laser beam was used as an incident light source (5 mW power at wavelength 632.8 nm). The transmittance of the PDLC films was recoded with a photodiode, and the response of the photodiode was monitored with a digital storage oscilloscope. The electric field square wave (1 kHz) was applied and the distance between the PDLC film and photodiode was 300 mm. The transmittance of air was normalized as 100%.

RESULTS AND DISCUSSION

Generally, it is convenient to fix the contents of two components and investigate the electro-optical properties of the system by only changing the content of the third component. In our subsequent consideration of LC/photopolymerizable monomers/SiO₂ nanoparticles composites, the contents of the LC and photopolymerizable monomers are fixed, and the modification of the LC/photopolymerizable monomers composites by SiO₂ nanoparticles is taken into account. When the applied voltage increases, the transmittance of the samples reaches the saturation level T_{s} , and $CR = T_s/T_o$ is commonly known as the switching contrast where T_o is the initial off-state transmittance. The threshold voltage (V_{th}) and the driving voltage (V_{dr}) are defined as the electric fields required for the transmittance to reach 10 and 90% of T_{s} , respectively.

Figure 1 shows the voltage dependence of the transmittance of samples A–E. As the SiO₂ nanoparticles content increased, T_s decreased obviously. Meanwhile, T_o decreased dramatically for the SiO₂ nanoparticles content up to 0.5 wt %, then decreased slightly for contents increasing from 1.0 to 2.0 wt %. These behaviors are more evident in Figure 2, which shows the content of the SiO₂ nanoparticles dependence of T_o and CR. CR increased at first for the SiO₂ nanoparticles content up to 1.0 wt %, because CR is strongly influenced by T_o which is the denominator of the fraction, and then decreased dramatically as T_s decreased fast.

One generally approved explanation is that more LC orientation defects are formed with doping SiO_2 nanoparticles in LC/photopolymerizable monomers

Figure 1 The applied electric field (1 kHz) dependence of the transmittance of samples A–E.

composites.^{10,11,15} The refractive index jump at the border separating LC and SiO₂ nanoparticles aggregates results in a stronger light scattering for samples. As a result, T_o decreased with increasing the SiO₂ nanoparticles content. When an electric field is applied to the samples, the light scattering caused by the refractive index mismatch of coexisting LC and the SiO₂ nanoparticles can be reasonably considered as a major factor for the samples in the transparent state, where the LC orientation defects disappear. Consequently, T_s decreased with doping the SiO₂ nanoparticles.

In addition, the refractive index of the modified polymer doped with SiO₂ nanoparticles (n_{mp}) is a linear function of the content of SiO₂ nanoparticles¹⁰:

$$n_{\rm mp} = n_p \varphi_p + n_{\rm np} \varphi_{\rm np}$$

where φ_p and φ_{np} are the volume fraction of polymer and SiO₂ nanoparticles, n_p is the refractive index of the polymer doped without SiO₂ nanoparticles. For PDLC composites, the modification of n_p may

Figure 2 SiO₂ nanoparticles concentration dependence of CR and T_{or} respectively.

Figure 3 SiO₂ nanoparticles concentration dependence of V_{th} and V_{dr} .

result in significant changes of light scattering characteristics caused by the refractive index mismatch of the coexisting phases.

Figure 3 shows the content of SiO₂ nanoparticles dependence of V_{th} and V_{dr} . V_{th} increased slightly with increasing the content of SiO₂ nanoparticles. Meanwhile, V_{dr} increased fast when the SiO₂ nanoparticles content was less than 1.5 wt %, and then changed a little for contents up to 2.0 wt %. In addition, it is shown in Figure 4 that T_{off} decreased dramatically whereas T_{on} increased simultaneously with increasing the SiO₂ nanoparticles content.

Obviously, SiO₂ nanoparticles played a key role in the variation of the parameters of electro-optical properties as mentioned earlier. Generally, modification can be brought about by the reaction of the \equiv SiOH groups on the surface of the silica with organosilicon compounds leading to silanized silica or with other organic compounds.¹⁶

Figure 4 SiO₂ nanoparticles concentration dependence of $T_{\rm on}$ and $T_{\rm off}$.

Journal of Applied Polymer Science DOI 10.1002/app

(a) (b) (c)

Figure 5 (a) A particle comprising an aggregate of primary particles 1 aggregated by covalent chemical bonds; (b) and (c) agglomeration of the particles by noncovalent bonds hydrogen bonds 2.

In our experiment, the SiO₂ nanoparticles used were hydrophobic silica nanoparticles aerosil R812S, the surfaces of which were modified with hydrophobic polymethylsiloxane fragments^{17,18} and contained a density of 0.29 OH groups nm⁻². Consequently, the SiO₂ nanoparticles dispersed in a nematic LC phase could form aggregates through \equiv Si-O-Si \equiv covalent chemical bonds as shown in Figure 5(a), and then form larger agglomerates via hydrogen bonds as shown in Figure 5(b,c).^{19,20}

As a result, the agglomerates formed a rather strong network^{21,22} in \widetilde{LC} layers as shown in Figure 6, which shows the scheme of the inside structure of the sample in three different states. The hydrogen bonds between the SiO₂ particles surface OH groups and the LC molecules¹⁴ resulted in an effective interaction (a high anchoring strength) of the LC molecules with the SiO₂ particle surface. Therefore, a larger electric field was required to reorient LC droplets along the direction of the applied electric filed, which implied that the greater the SiO_2 nanoparticles content, the larger were the $V_{\rm th}$ and $V_{\rm dr}$. Moreover, longer T_{on} was required to overcome the anchoring effect of SiO₂ nanoparticles agglomerates on the LC molecules. However, when the electrical field was removed, $T_{\rm off}$ for the molecules to revert to

Nematic liquid crystal

: Monomer

Figure 6 The scheme of the inside structure of the sample in different states: (a) the sample before UV curing; (b) the sample after UV curing in off-state; (c) the sample after UV curing in on-state.

the equilibrium distribution decreased because of the existence of the anchoring energy of the SiO_2 nanoparticles agglomerates, and this was demonstrated by our experiments.

In addition, the observation of the microstructure of the polymer matrix in the PDLC films was carried out with scanning electron microscopy (SEM; S360, Cambridge, England). The glass substrates were carefully removed and the remaining composite layer was dipped in hexane for about 24 h at room temperature so that the LC molecules were extracted, and the ITO film with the polymer matrix was dried in vacuum. Then, the microstructure of the polymer matrix was observed under SEM after the polymer matrix was sputtered with gold. Figure 7

Figure 7 (a) and (b) SEM image of the polymer matrix of samples A and C, respectively.

shows the microstructures of the polymer matrix of sample A without SiO_2 nanoparticles [Fig. 7(a)] and sample C with doped 1.0 wt % SiO_2 nanoparticles [Fig. 7(b)]. The formation of the smooth polymer matrix can be seen in Figure 7(a), whereas the formation of the coarse polymer matrix with the particle aggregation can be seen in Figure 7(b). That means the addition of the SiO_2 nanoparticles affected the microstructure of PDLC films significantly because of the formed agglomerates of SiO_2 nanoparticles. This result demonstrates that the above explanation is reasonable.

CONCLUSIONS

For a PDLC film with optically transparent polymer matrix modified by SiO_2 nanoparticles, T_o , T_s , and T_{off} decreased, but V_{th} , V_{dr} , and T_{on} increased with increasing the SiO_2 nanoparticles content due to the anchoring effect of SiO_2 nanoparticles agglomerates on the LC molecules. The observed results show that nematic LC/photopolymerizable monomers/SiO₂ nanoparticles composites are promising for LCD and other electro-optical applications. Further research to optimize these devices and to better understand the mechanism of physics is in progress.

References

- Kiselev, A. D.; Yaroshchuk, O. V.; Dolgov, L. J Phys Condens Matter 2004, 16, 7183.
- 2. Liu, J.; Wu, F. J Appl Polym Sci 2005, 97, 721.
- Amimori, I.; Eakin, J. N.; Qi, J.; Skacej, G.; Zumer, S.; Crawford, G. P. Phys Rev E 2005, 71, 31702.
- 4. Boussoualem, M.; Roussel, F. Phys Rev E 2004, 69, 31702.
- 5. Zumer, S.; Doane, J. W. Phys Rev A 1986, 34, 3375.
- 6. Zumer, S. Phys Rev A 1988, 37, 4006.
- 7. Malik, P.; Raina, K. K. Opt Mater 2004, 27, 613.
- 8. Lu, Z. J.; Yang, D. K. Appl Phys Lett 1994, 65, 505.
- Li, W. B.; Zhang, H. X.; Wang, L. P.; Ouyang, C. B.; Ding, X. K.; Cao, H.; Yang, H. J Appl Polym Sci 2007, 105, 2185.
- Yaroshchuk, O. V.; Dolgov, L. O.; Kiselev, A. D. Phys Rev E 2005, 72, 051715.
- 11. Dolgov, L. O.; Yaroshchuk, O. V. Mol Cryst Liq Cryst 2004, 40, 77.
- 12. Park, N.; Cho, S.; Kim, J. J Appl Polym Sci 2000, 77, 3178.
- 13. Maschke, U.; Coqueret, X.; Benmouna, M. Macromol Rapid Commun 2002, 23, 159.
- 14. Saez, P.; Aguilera, C. J Appl Polym Sci 2005, 77, 1812.
- 15. Dolgov, L. O.; Yaroshchuk, O. V. Polym Sci 2004, 282, 1403.
- 16. Ettlinger, M.; Ferch, H.; Mathias, J. Arch Pharm 1987, 320, 1.
- Chuiko, A. A.; Gorlov, Y. I. Chemistry of a Silica Surface; Naukova Dumka: Kyiv, 1992; p 247.
- Glushchenko, A.; Kresse, H.; Reshetnyak, V.; Reznikov, Y.; Yaroshchuk, A. O. Liq Cryst 1997, 23, 241.
- 19. Kreuzer, M.; Tschudi, T. Appl Phys Lett 1993, 62, 1712.
- 20. Eidenschink, R.; Nagel, B. U.S. Pat. 5,729,320 (1998).
- 21. Eidenschink, R.; Jeu, W. H. Electron Lett 1991, 27, 1195.
- 22. Kreuzer, M.; Tschudi, T.; Eidenschink, R. Mol Cryst Liq Cryst 1992, 223, 219.

1453